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A TEST FOR THE EFFECT OF TREATMENT OR TIME ON A BINOMIAL POPULATION 

Haskel Benishay, State University of New York at Buffalo 

I. Introduction 

The influence exerted on the 
parameter of a binomial population 
by a change in underlying conditions 
during a given time interval is a 
common topic of research in econom- 
ics, marketing, finance, opinion 
polling, medicine, and other fields. 
It is usually investigated either 
through a comparison of the means of 
two different samples, one taken at 
the beginning and another at the end 
of the period under consideration, or 
through the observation of the changes 
occurring during the period in the 
binomial attributes of one sample. In 
the latter approach, the individuals 
before and the individuals after the 
test period are the same and the bi- 
nomial sample is a "matched" one, the 
"match" being in the sameness of the 
individuals over time. This paper 
provides a critical evaluation of the 
matched sample test currently avail- 
able for the determination of the 
statistical significance of an influ- 
ence exerted on a binomial population 
and develops an alternative test for 
the same end. The two tests are dis- 
cussed and evaluated within the con- 
text of two probability models which 
are believed to cover a wide range of 
applications and of two major condi- 
tions of a priori information. The 
distinguishing characteristic of the 
two conditions is the existence or 
absence of a priori information about 
the extent of the changes which are 
expected to occur over time in the 
dichotomous characteristics of indi- 
viduals even when the binomial para- 
meter remains constant over time. It 
is suggested that the alternative 
method is more appropriate for the 
problem at hand for both probability 
models and for the case of a priori 
knowledge about change. In the absence 
of such knowledge a procedure based 
on the notions of the alternative 
test is proposed for situations de- 
scribed by both models. 

II. The Problem 

A certain influence or "treat- 
ment", like propaganda in a politi- 
cal setting, TV message in a drive 
to increase consumer demand, the ad- 
ministration of a drug in a medical 
experiment, or simply the passage of 
time, is presumed to be capable of 
increasing the number of "successes" 
in a binomial population. The pre- 
sumed effect of such treatment is to 
be tested statistically on a matched 
random sample of n observations. 
Measurements on the binomial charac- 
teristics of the sample observations 
before and after the treatment are to 
be taken and evaluated in a test of 
significance. 

In the specific context where 
the observations are individuals and 
the binomial characteristic is an 
answer of either ves or no to a par- 
ticular question, the following pro- 
cedure would be followed. Each in- 
dividual is asked the question before 
and after an exposure to a treatment 
or an influence. The responses are 
recorded in four categories: (1) af- 
firmative on both occasions; (2) neg- 
ative on both occasions; (3) first 
"yes" and then "no "; (4) first "no" 
and then "yes ". The problem is to 
determine by means of a test of 
nificance whether attitudes have 
changed as a result of an intervening 
influence. 

The customary test for this 
matched sample design compared the 
number of changes from one to zero 
against the number of changes from 
zero to one under the null hypothesis 
that the number of changes in each 
direction is one half of the total 
number of changes. The reasoning 
underlying this approach can be sum- 
marized approximately as follows: If 
there is no treatment effect in either 
the direction of increasing, or in the 
direction of decreasing, the number of 



ones, we would expect to observe only 
due to "chance ". These 

"chance switches," negative changes 
from one to zero and positive changes 
from zero to one, would occur even 
in the complete absence of a treat- 
ment effect. Under the null hypoth- 
esis that the treatment exerts no 
effect at all and that the binomial 
population retains the same parameter 
in the absence of a treatment effect, 
the expectation is that the switches 
during the interval of time under 
consideration should be equally nu- 
merous in either direction. Or, put 
differently, the sum of the changes, 
both positive and negative, should 
be expected to equal zero. 

Whatever it may have in its 
favor, the customary test is inappro- 
priate for the problem at hand be- 
cause it is a conditional test which 
does not take account of the total 
phenomenon under consideration. The 
conditional framework of the test is 
unsuitable because it tests the null 
hypotheses for a given number of total 
non -zero chances (sum of positive and 
negative changes) for any sample size. 
The conclusions of the test hold for 
the particular number of non -zero 
changes which occur not only in sam- 
ples whose size equals that of the 
sample used in the test, but also in 
samples of any other size. As long 
as two samples of unequal size have 
the same number of non -zero changes, 
they are considered, in the framework 
of the traditional test, as equivalent 
preceding conditions. The test is 
defective because it neglects to 
incorporate an important and sub- 
stantial amount of the total process 
under consideration. It does not 
at all take account ofithe non- chang- 
ing individual in the process and 
thereby neglects altogether to con- 
sider the stable part of the process. 
It is incapable of providing a com- 
prehensive answer to the truly rele- 
vant questions What is the statis- 
tical significance of a particular 
sample difference between the posi- 
tive and negative changes for a given 
sample size, i.e., for the process as 
a whole including all the non -zero 
and zero changes? 

The alternative test proposed 
and developed in this paper attempts 
to supplement and remedy the defects 
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of the current test. As it turns 
out, the alternative test produces 
substantially different answers. For 
a given sample size it appears to 
reject the null hypothesis that no 
net change has occurred more often 
than the customary test. 

In order to evaluate the tradi- 
tional test and the proposed alter- 
native in the context of clearly de- 
fined underlying processes the bi- 
nomial process under consideration 
is described below in two alternative 
ways. Constructed are two probabil- 
ity models which purport to consist 
of the essential and relevant ele- 
ments of the process as these ele- 
ments appear in most empirical set- 
tings of actual problems. These 
models state explicitly the assump- 
tions underlying the null hypothesis, 
assumptions which are made implicitly 
about the binomial process in the 
usual experimental context. Two sets 
of underlying assumptions character- 
ize the null hypothesis: 

1. The parameter of the bi- 
nomial population remains 
stable over time. All 
zeros remain zeros and 
all ones remain ones. 
"Chance" in the form of 
observational error 
brings about not true but 
observed change in par- 
ticular observations. 

2. The parameter of the bi- 
nomial population remains 
stable over time, although, 
due to "chance" conceived 
as the unsystematic effect 
of many variables, some 
ones become zeros and some 
zeros become ones. 

III. Model I 

Model of Errors in Measurement 
or Mirage Switches 

In this model no individual in 
the binomial population really 
changes over time. Some individuals, 
however, appear to change because 
of the mirage effect of observational 
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error. 

Let P represent the probability 
of the existence of some dichotomous 
attribute (success, yes). Let the 
existence of this attribute be desig- 
nated as usual by one. Let (1 -P), 
to be referred to also as Q, repre- 
sent the probability of its absence 
(failure, no) and let its absence be 
designated by zero. 

The individuals in the population 
are assumed to be observed with an 
error. Specifically, some individuals 
with true values of one are observed 
as zeros. Some individuals with true 
values of zero are observed as ones. 
Let B represent the probability of 
observing; or measuring an individual 
with an error and let the probability 
of observing its true value correct- 
ly be =1 -B. 

The previous assumption provides 
a distinction between the true, one, 
zero, values and the observed values 
of individuals in a binomial popula- 
tion. It introduces, in principle 
and on the level of the population 
as a whole, the existence of obser- 
vation or measurement errors. It 

creates a link between the need to 
deal with observed values subject to 
error and the fact that most discus- 
sions of problems associated with 
binomial populations omit the con- 
sideration of inevitable errors in 
the measurement of values. 

Let t be a point in time and let 
t +z be a point in time some time 
later where z is the length of the 
period under consideration. Let the 
probability of a true one at t be Pt, 

at t +z be Pt +z, and let P= Pt =Pt +z. 

Let the probability of observing 
an individual at time t, with an error, 
be represented by Bt and at t +z, by 

Bt+z and let Bt =Bt 

Let the probability of observing 
a change of minus one, -1, i.e., a 
switch from to zero, between t 

and t +z be P10. In terms of previ- 

ously defined probabilities Pio turns 

out to be: 

(1.01) 

PGB + QBG = BG 

The term PGB represents the probabil- 
ity of being actually one and being 
observed correctly as one at t and 
being mistaken for zero at t +z. 
The term QBG represents the probabil- 
ity of being really zero and being 
observed erroneously as one at t and 
being observed correctly as zero at 
t +z. 

Let the probability of observing 
a change of plus one, +1, i.e., a 

switch from zero to one between t and 
t+z, be In terms of previously 

defined probabilities emerges as 

(1.02) 

QGB + PBG = BG 

The first term above, QGB, re- 
presents the probability of a true 
zero, first observed correctly, then 
observed erroneously; and the second 
term is the probability of a true 
value of one observed first incorrect- 
ly, later with no error. 

With similar reasoning P11, the 

probability of observing a value of 
one both at t and t +z, i.e., a change 
of zero is 

(1.03) 

+ QB2 

and POO, the probability of observing 

a value of zero both at t and t +z, 

i.e., again, a change of zero, is: 

(1.04) 

QG2 + PB2 

As becomes evident upon inspec- 
tion, the probability BG is the 
variance of the error distribution. 
Thus the variance of the error dis- 
tribution becomes the probability of 
observing a change of a plus one +1, 
between t and t +z, as well as the 
probability of observing a change of 
minus -1, between the same two 
points in time. Also, 2BG represents 



the probability of observing a change, 
i.e., negative and positive unity 
changes and (1 -28G) represents the 
probability of observing stability 
or a change of zero. The probability 
(1 -2 is, of course, equal to the 
sum of (1.03) and (1.04) above. 

To summarize, the observed 
change, a random variable henceforth 
referred to as Di, can take on values 
-1, 0 and +1, with associated pro- 
babilities BG, (1 -28G) and re- 
spectively. And more generally, if 
BG is redefined as K, then associated 
probabilities of -1, 0 and +1, are 
K, 1 -2K and K respectively. In a 
typical situation the probability of 
error is small and the bulk of the 
probability of the distribution of 
the changes is centered at zero as 
is shown in Figure I. The expec- 
tation of this distribution of 
changes, henceforth referred to as 
E(D1) will equal zero as can be easily 

demonstrated by a straightforward use 
of the definition of expectations 

(1.05) 

Obtained in a similar fashion is the 
variance of the distribution of ob- 
served changes. The values of D1, 

and their associated probabilities 
are employed in the definition of 
variance to obtains 

(1.06) 

= (-1)2BG + (1)2BG = 2BG 

Figure I 

probabilities 

probabilities 

Dl values 

1-2BG 

K 1-2K 

-1 

BG 

+1 
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Under the assumptions of Model I 
and particularly under the assumption 
that no change occurs in P between 
t and t +z, the expectation, E, of the 
distribution of the sample sum, S, 
of n independent observations random- 
ly drawn from the distribution of 
changes is equal to zero since: 

(1.07) 

E(S) = d nE(D1) = 0. 

The variance of the distribution of 
the sum, V(S), is equal to n times 
V(D1) which in turn equals n2BG. 

(1.08) 

V(S) = nV(D1) = n2BG 

Thus, in a Model I world, the null 
hypothesis implies an expectation of 
zero, variance of 2nBG or 2nK for the 
sample sum. 

Under the alternative hypotheses 
associated with Model I, the parameter 
P can go either up or down in the 
following two clearly defined ways: 
(1) some true zeros becomes true ones 
and no change occurs in any true ones; 
or (2) some true ones become true 
zeros and no change occurs in the true 
zeros. A one right (left) tail test 
would imply for the alternative 
hypothesis the first way, (1), but 
not the second, (2) the second way 
(2), but not the first, (1)a. A two 
tail -test would make the alternative 
hypothesis either the first way, (1), 
or the second way, (2),of chaging P. 



386 

IV. Model II 
Real Switches Model: Error 

In this model the parameter of 
the binomial population remains 
stable over time, but some true ones 
become true zeros and some true zeros 
become true ones due to a variety of 
"chance" influences not related to 
the particular factor whose effect is 
under investigation. No observational 
error is assumed to intervene in any 
way between the true values and their 
perception and recording. 

Let P and be defined as they 
have been in Model I, such that Pt 
equals Pt +z. Let C01 be the prob- 

ability that a true zero becomes a 

true one, C10 the probability that a 

true one becomes a true zero between 
t and t +z. 

riven these assumptions, P at 
t +z can be viewed as: 

(2.02) 

Pt+z Pt(1-C10) + 

Since Pt+z Pt = 

(2.03) 

P = P(1-C10) QC01. 

Expanded (2.03) indicates the nature 
of the addition to and subtraction 
from P. 

(2.04) 

P = - PC10 + 

It becomes evident that as a 
consequence of precedin,7 assumptions 
it is definitely, although implicitly, 
assumed that: 

(2.05) 

PC10 = QC01 

which in turn implies that: 

(2.06) 

P/Q = C01/C10 

One more assumption is required 
to render Model II internally con- 
sistent. The probability of a switch 
away from an individual's own value 
must necessarily be constrained as 
follows: 

(2.07) 

C10 Q/P 

for P 1/2. And similarly: 

(2.08) 

P/Q 

for Q > 1/2. Without these constraints, 
it is impossible to maintain that the 
probability of positive changes is 
equal to the probability of negative 
changes without colliding with the 
model's logic as it now stands. The 
constraint simply acknowledges the 
fact that when more than half of the 
individuals are ones, it cannot be 
assumed that all ones become zeros, 
C10 = 1, and maintain the equality 
between negative and positive changes 
even if C01 is also assumed to equal 
unity. 

The probabilities of observing 



a switch are as follows: 

from one to zero: 

(2.09) 

PC10 

from zero to one 

(2.10) 

QC01 

The probability of remaining a one is: 

(2.11) 

P(1-C10) 

and the probability of remaining a 
zero is: 

(2.12) 

Q(1 

Again, under the hypothesis that 
the treatment under consideration 
exerts no effect, we obtain under 
Model II a distribution of changes, 
D2, whose values are -1, 0 and +1, and 
whose probabilities are PC10 [as in 

(2.09)], 1 -PC10 - QC01, [the sum of 

(2.11) and (2.12)] and QC01 [as in 

(2.10)], respectively. As stated for 
D1 in Model I (outlined above) the 
probabilities of the change, D2, can 

be stated more generally as K for -1, 
(1 -2K) for 0, and K for +1, in which 
case Figure I above may serve as a 
good description of the distribution 
of changes predicated on the assump- 
tions of Model II. The null hypoth- 
esis under Model II for the sample 

387 

sum, S, can be stated as it was 
under Model I: The expectation of 
the distribution of the sum statistic, 
S, is equal to zero. In a manner 
analogous to Model I, the alternative 
hypothesis can be: the expectation 
of the distribution of the sum of 
the changes is larger than zero (one 
tail), smaller than zero (one tail) 
and smaller or larger than zero (two 
tail). The difference is, of course, 
that any real change is a net change. 
It is the difference between positive 
true switches and negative true 
switches. 

V. The Two Models and the Tests 

It becomes evident that under 
the assumptions of both Model I and 
Model II we obtained distributions 
with common characteristics of ob- 
served changes. Under both models 
the possible values of the changes 
are -1, 0 and +1, and their associated 
probabilities can be expressed as K, 
(1 -2K) and K respectively. We shall 
refer to this distribution generally 
as D. The difference between the 
models rests in the following: Under 
Model I, 2K must necessarily be equal 
to or smaller than 1/2 since by defin- 
ition 2K equals 2BG and BG can be 
at most 1/4. In Model II, 2K is 
constrained in a different fashion. 
It can be as large as, or smaller than, 
twice the probability of one or zero, 
whichever is smaller. In most actual 
cases, however, and under both models, 
2K is likely to be well below one-half 
(1/2) and probably closer to zero 
than to one -half. 

The test of significance proposed 
in this paper as an alternative to 
the customary test, for situations 
depicted by either Model I or Model II, 
is based on a distribution of a 
statistic computed from a sample from 
the distribution of changes D1 =D. 

The statistic is the sum of n sample 
changes, d, "drawn" at random: 

(3.01) 

n 
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The expectation and variance of this 
statistic has been previously de- 
scribed as zero and respectively. 

In terms of the distribution of 
the sample sum of changes, as a con- 
text for the comparison of the cus- 
tomary test and the one proposed as 
an alternative, it can be said that 
the customary test ignores totally 
the zero changes in the sample as 
if they have never existed, and treats 
the non -zero changes which appear 
in the sample, as if they were, ex 
post, a sample drawn from a distri- 
bution with only two possible values, 
-1 and +1, with associated proba- 
bility of 1/2 for each.1 The test 
proposed in this paper is different 
from the traditional test in that 
it takes account of the total process 
including the zero changes. The 
distribution for the test statistic 
proposed as an alternative in this 
paper can be worked out exactly for 
the case where previous knowledge 
of 2h is available. Where such a 
priori knowledge is not available it 
is proposed that confidence inter- 
vals be computed for the signifi- 
cance level. 

VI. Advance Knowledge 
of Intrinsic Change 

Advance priori knowledge of 
the magnitude of K (or 2h) in a 

.odel I world may be based simply 
on actual knowledge of the proba- 
bility of error.. If is known 
independently, may be obtained by 
means of the relationship between K 
and B. 

(3.02) 

h = 6(1-B) = 

1Treating; the non -zero d outcomes 
of the sample as if they came 
(retroactively) from a population 
with -1, +1 values and probabilities 
of 0.5, 0.5 respectively is equi- 
valent to what is done in the tradi- 
tional test where the -1 values are 
redefined as 0 and the +1 values re- 
defined as one. 

In a Model II world, priori 
knowledge of the intrinsic turnover 
is simply a direct knowledge of 2K or 
K. 

If is known before the start 
of the sampling process, then the test 
statistic, the sample sum, S, can be 
evaluated against its exact probability 
distribution which can be derived by 
analytical methods as is illustrated 
below. For large samples, the central 
limit theorem can be relied upon to 
make the normal Gaussian) distribution 
an acceptable approximation for the 
distribution of S in which case the 
approximately normal distribution 
under consideration will be one with 
expectation of zero and a variance of 
n2K. 

The probability distribution of 
the sample sum, S, can be derived by 
straightforward enumeration or by a 
method which is conditioned by the 
view that for a given sample size, the 
sample sum, S, is an outcome of a two 
stage process. The cumulative proba- 
bility table for S, below, was computed 
by the second method. 

The probability distribution of 
S can be derived by considering a 
draw from S as a two stage process. 
(a) A draw to determine the number, 
of non -zero outcomes in a sample size 
n where Ci ranges between 0 and n, i 

between 1 and n +l. The probabilities 
of Ci, F(Ci), i.e., the probabilities 

of C1 =0, C2= 1,...Cn +1 =n are usual 

binomial probabilities and are deter- 
mined by 2K and n. (b) Ci draws from 

a distribution of +1, -1, with asso- 
ciated probabilities 1/2, 1/2 to 
determine S for a particular Ci. To 

compute the probabilities of values 
equal to or larger than S for sample 
size n, for all possible values of 
Ci, we compute (1) the probability of 

values equal to or larger than S for 
each Ci (2) we multiply the preceding* 
probability by the probability of 
Ci, P(Ci), and (3) sum this product 
for all S, for i= 1...n +1 (for a given 
s, all terms from 0 to n). The proba- 
bility of Ci is given by the binomial 
parameter 2K, the probability of non- 
zero change and by the binomial 
expansion. The probability of values 
equal to or larger than S for,Ci is 



given by the binomial parameter 1/2 and 
the binomial expansion. 

There are (2n) +1 possible S values 
ranging from -n to +n in consecutive 
steps of unity. Since the probability 
distribution of S turns out to be sym- 
metrical about zero, cu4nulative proba- 
bilities are presented only for values 
equal to or larger than X where X is 
zero or positive values of S, i.e., 
for values of S ranging from zero to 
n. A table is developed for sample 
size 1 to 10 and for probability of 
change 2K, equal to 0.2, [i.e., K =.1, 
(1- 2K) =.8]. 

Upon comparison of the traditional 
test probabilities with those produced 
by our table, it become evident that 
the two methods produce different re- 
sults. For example, take a case in 
which the number of nonzero changes 
equals two, C =2, and sample size is 
also 2. According to the traditional 
test the probability that S will be 
equal to or larger than 2 is the pro- 
duct (0.5)(0.5) =0.25. This result is 
obtained regardless of the values of 
2K. According to the method proposed 
in this paper and given that 2K is 
equal to .2, the probability for the 
same outcome is 0.01 (see Table 1). 
For C of 2, for 2h of 0.2, but for a 
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sample size of 10, the traditional 
test produces again the value 0.25 
for the probability that S is equal 
to or larger than 2, the method pro- 
posed in this paper produces a proba- 
bility of 0.13524132 for the same 
outcome (see Table 1). 

VII. No Advance Knowledge 
of Intrinsic Change 

When no knowledge of the magni- 
tude of 2K is available before the sam- 
ple is taken, it is proposed that the 
2K be estimated from the data by the 
ratio of the observed number of non- 
zero changes to total observed changes. 
Once this estimate is available, the 
usual confidence intervals with Y per- 
cent confidence are computed with an 
upper limit and a lower one. These 
confidence limits are then used as if 
they were two known values of 2K to 
compute two levels of significance for 
the null hypothesis, a lower and an 
upper limit. It can then be said with 
Y percent confidence that the true 
level of significance falls between 
the upper and lower significance limits 
Y percent of the time, given, of course, 
that the null hypothesis of no net 
change is true. 

TABLE 1 

Cumulative Probability Table for Number of Positive (Negative) 
Changes Over Time in a Sample Size of n* from a Binomial Population. 

2K equals 0.2. ** 

Sample 
Size 

1 

1 
6 7 

2 3 

8 

4 5 

9 10 

. 90000000 .10000000 

2 .83000000 .17000000 .01000000 

3 .78000000 .22000000 .02500000 .00100000 

4 .74350000 .25650000 .04210000 .00330000 .00010000 

5 .71624000 .28376000 .05966000 .00686000 .00041000 .00001000 

6 .69540200 .30459800 .07679000 .01149500 .00101500 .00004900 

. 00000100 

7 .67910240 .32089760 .09304130 .01697650 .00196640 .00014080 

.00000570 .00000010 

.66606755 .33393245 .10822045 .02308197 .00328485 .00030985 

.00001865 .00000065 .00000001 

9 .65542519 .34457473 .12227779 .02961610 .00496706 .00057823 

.00004597 .00000238 .00000007 .00000000 

10 .64656964 .35343008 .13524132 .03641736 .00699308 .00096388 

. 00009483 .00000651 .00000029 .00000000 .00000000 
* Sample size from I to 10 
** The probability of positive and negative changes, 2K, is .02, The 

probability of +1 is 0.1. The probability of -1 is 0.1. 


